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Expressions have been derived in the paper for all four possible transfer functions between the 
inlet and the outlet gas and liquid streams under the counter-current absorption of a poorly 
soluble gas in a packed bed column. The transfer functions have been derived for the axially 
dispersed model with stagnant zone in the liquid phase and the axially dispersed model for the 
gas phase with interfacial transport of a gaseous component (PDE- AD). Calculations with prac­
tical values of parameters suggest that only two of these transfer functions are applicable for 
experimental data evaluation. 

The existence of flow non-idealities in both phases in packed bed columns and other 
industrial equipment and their negative impact on the efficiency of operation of this 
equipment has been generally acknowledged. In order to describe axial mixing, 
provided that an attempt to account for this effect is made at all, the axially dispersed 
model! has been mostly used. Experimental evidence, however, shows that although 
this model may suit well for the flow of the gas phase, the response curves of the liquid 
phase indicate that at least part of the liquid passes through the bed by a mechanism 
different from the one embodied in the axially dispersed model2 • New models describ­
ing the flow of liquid have been therefore proposed with the dynamic and the stagnant 
liquid zone (PE - piston exchange)3, the axially dispersed model with the dynamic 
and the stagnant zone (PDE - piston diffusion exchange)4 and others. Both just 
mentioned models describe the reality better than the axially dispersed model but 
contain more parameters. 

The problem of the real flows in irrigated beds of solid particles has been so far 
studied separately in the gas and the liquid phase with the aid of tracers that do not 
pass the interface. A tracer capable of crossing the interfacial surface permits simul­
taneous investigation of the dynamics of one or both phases in the presence of inter­
facial transport. Works of this kind, however, are so far rather rare5 ,6. 

Models with the dynamic and the stagnant zone, PE and PDE, have not been so 
far used for research of the flow dynamics in the presence of interfacial transfer. 
One of the reasons for this situation is no doubt the high number of parameters 
involved in the model under the two phase flow. For instance, using the PDE model 
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for both the liquid and the gas phase the total number of parameters amounts to 12. 
This is, of course, too much from the stand point of subsequent parameter evaluation 
from experimental data obtained by currently available methods. The number of 
parameters is somewhat diminished provided that the PDE or PE models are applied 
to only one phase. 

Solution of such models in the time domain, although possible, is awkward. 
The difficulty of the solution, however, can be reduced by solving the underlying 
model equations in the Laplace or the frequency domain, for there is no need for 
the transformation back into the time domain. 

The aim of this paper has been to formulate the model of the two-phase counter­
-current flow with interfacial transfer utilizing the concept of the stagnant zones in 
the liquid phase and its solution in the frequency domain. From these results one can 
further derive, by relatively simple means, simpler asymptotic solutions. Organic part 
of the aim has also been a numerical test of the obtained transfer functions from the 
stand point of their eventual utilization for evaluation of individual parameters for 
the process of absorption of a poorly soluble gas. The obtained results should serve 
in turn for designing experiments to verify the validity of the presented models. 

THEORETICAL 

Upon confining the following considerations to the case of absorption of a poorly 
soluble gas in a counter-current column, the flow rates of the gas and the liquid 
phase will remain constant throughout the column and the resistance to mass transfer 
will be concentrated Qn the side of liquid. The overall mass transfer coefficients may 
then be replaced by the gas side mass transfer coefficients. In addition, we shall 
assume independence of all quantitites and parameters on the radial coordinate 
which reduces the model to a unidimensional one. 

Axially Dispersed Model with the Stagnant Zone in the Liquid Phase 

The model for the two-phase flow is constructed from the axially dispersed model ( AD) 
for the gas phase and the axially dispersed model with the stagnant zone (PDE) for 
the liquid phase. The scheme of the model is shown in Fig. 1. The model contains 
eight parameters. These are: the gas, the dynamic liquid and the stagnant liquid 
hold-ups, ha, hD and hs, the volume mass transfer coefficient between the gas and 
the dynamic liquid hold-up, kLDaD' the mass transfer coefficient between the gas and 
the stagnant liquid hold-up, kLSas, the coefficient of liquid exchange between the 
dynamic and the stagnant hold-up, q, and the axial dispersion coefficients in the gas 
and the dynamic liquid hold-ups Ea and ED' 
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1224 Moravec, Stanek: 

A balance on mass of the absorbed component in indi~idual phases yields: 

(1) 

(2) 

(3) 

The concentrations Co, Co, and Cs are taken to be the deviations of the appro­
priate concentrations from their steady state values. This definition is advantageous 
in view of the subsequent solution of the set of Eqs (1) - (3) by the Laplace transform. 

The aim of the solution of the set of Eqs (1) - (3) is to derive the transfer functions 
of the model. The transfer function is generally the ratio of the Laplace transforms 

r------.--L--,----L---~z=z 

~----~-.--~---r---JZ=O 

FIG. I 

Balance scheme of the PDE- AD model. 
a GCa - haEaCoCa/oz), b GCa + GCoCa / 
8z) dz - haEaCoCa/oz) - haEaCo2Ca/ 
cz2) dz, c LCo + LCoC%z) dz + hoEo. 
. (aco/az) + hoEoCo2CO/8z2) dz, d LCo + 
+ hoEoCoC%z), e kLDaOCCa/m - Co), 
f kLsasCCoim - Cs), g q(Cs - Co) 
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of the outlet and the inlet signals. For the two-phase flow with interfacial mass 
transfer one can derive altogether four different transfer functions. These are: the 
outlet gas to inlet gas stream transfer function - XGz/XGo• the outlet liquid to inlet 
gas stream transfer function - XLO/XGo• the outlet liquid to inlet liquid stream trans­
fer function - XLO/XLZ and the outlet gas to inlet liquid stream transfer function -

XGZ/XLZ' 
The Laplace transform of the original set of partial differential equations (1) and 

(2) and the ordinary differential equation (3) with the initial condition: 

t = 0 • CG = Co = Cs = 0 (4) 

yields two ordinary differential equations and a single algebraic equations in the form 

(5) 

(6) 

(7) 

The choice of the initial condition in the form (4) affects in no way the statement 
of the problem for it only means that all three concentrations are measured as devia­
tions from the steady state values. Any problem can be transformed to this case by 
a simple transformation while the controlling equations remain unchanged. 

The set of Eqs (5)-(7) may be solved analytically, for instance, by eliminating the 
concentrations Xs and Xo, which transforms the set (5)-(7) to a fourth order diffe­
rential equation with constant coefficients: 

where 
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(13) 

Subscripted H's in Eqs (9)-(13) have the following meaning: 

H 3 = (kLSas)2 _ kLDa D _ kLSaS - hGs 
m(kLSaS + q + hss) m m 

H 8 = kLsasq + kLDa D • 

m(kLSaS + q + hss) m 

The characteristic equation of the differential equation (8) reads as follows: 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

It is a fourth order algebraic equation with complex coefficients. Solution of this 
equation by standard means is impossible. If, however, Eq. (22) is multiplied by 
a fourth order equation with the complex conjugate coefficients, an eighth order 
equation results: 

A 1B 1",8 + (A1Bl + A1B l ) A7 + (A1B3 + AzBl + A 3B l ) ",6 + 
+ (A1B4 + A2B3 + A3B2 + A4Bl) AS + (A1Bs + A2B4 + A3 B3 + A4B2 + 

+ AsB1) ",4 + (A2BS + A3B4 + A4B3 + AsBz) A? + (A3BS + A4B4 + 
+ AsB3) ,11 + (A4BS + AsB4) A + AsBs = 0, (23) 

where Bi, i = 1,2,3,4,5, are coefficients complex conjugate to Ai' Eq~ (23) has real 
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coefficients and may be solved by standard algorithms. Its solution yields four pairs 
of complex conjugate roots while always only one out of each pair of roots satisfies 
Eq. (22). Selection of the roots Ai> A2, A3 and ;'4 can be made on the basis of the test 
of validity of Eq. (22). Solution of the set of Eqs (5)-(7) can then be written in the 
form: 

Xa = kl exp (AIZ) + k2 exp (A2Z) + k3 exp (A3Z) + k4 exp (A4Z) (24) 

Xo = a1k1 exp (AIZ) + a2k2 exp (A2Z) + a3k3 exp (I'3Z) + a4k4 exp (A4Z) , (25) 

where 

It would be also possible to write an analogous expression for the concentration Xs. 
Since, however, only the outlet and the inlet concentrations are practically interesting, 
these expressions shall not be presented here. 

The constants kl - k4 in Eqs (24) and (25) may be determined, using Danckwerts' 
boundary conditions for the gas inlet and the liquid outlet cross section 

z = 0, X -X EahadXa 
0- 00 + ----, 

G dz 
dXo = 0 
dz 

and the liquid inlet and the gas outlet cross section: 

in the form: 

where 

z = Z, Xo = XLZ - Eoho dXo , dXa/dz = 0 
L dz 

kl = A1.(h4X LZ + hsXao) 
hlh6 - h2 hS 

k2 = A1.(h3X LZ + h7X ao) 
hlh6 - h2 hS 

k3 = Al(h2XLZ + h6X ao) 
hlh6 - h2hS 

k4 = A1.(h t XLZ + hsXGo) , 
ht h6 - h2 h S 
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+ a j b3,11}'2 exp (,12Z) - a 3b1,1z,13 exp (,1zZ) + 
+ aZb1,1z,13 exp (,13Z) - a 1bz,11A3 exp (A3Z)]jJ (33) 

112 = [a Zb4,11A2 exp (,11Z) - a4b2A1A4 exp (A1Z) + 
+ a4b1}'ZA4 exp (A2Z) - a 1b4,11Az exp (A2Z) + 
+ a 1bz,11,14 exp (A4Z) - a2b1A2A4 exp (A4Z)]fJ 

113 = [a4b3,11)'4 exp (A1Z) - a3b4,11A3 exp (A1Z) + 

+ a1b4AlA3 exp (A3Z) - a4b1,13A4 exp (A3Z) + 

+ a3bl,13A4 exp (A4Z) - a1b3AlA4 exp (A4Z)]jJ 

114 = [a 3b4,12,13 exp (,12Z) - a4b3,12A4 exp (A2Z) + 

+ a4b2A3,14 exp (,13Z) - a2b4A2A3 exp (A3Z) + 

+ a2b3,12A4 exp (,14Z) - a3b2)'3,14 exp (,14Z)]jJ 

115 = [alQ3dlAzA3 exp (,11Z + AzZ) - aza3dzAlA3 exp (AIZ + ,12Z) + 

+ a2a3d3Al,1Z exp (A1Z + ,13Z) - alQ2dl,1ZA3 exp (,11Z + A3Z) + 

(34) 

(35) 

(36) 

+ a1a2d2,11,13 exp (A2Z + A3Z) - ala3d3Al,12 exp (,12Z + A3Z)]jJ (37) 

116 = [a2a4d2,11,14 exp (,11Z + A2Z) - a1Q4dl,1Z,14 exp (A1Z + ,12Z) + 

+ a IQzdl ,1z,14 exp (}'lZ + ,14Z) - aza4d4,11A2 exp (,11Z + ,14Z) + 

+ a1a4d4,11,12 exp (,1zZ + A4Z) - a1azdz,11)'4 exp (,1zZ + ,14Z)]jJ (38) 

117 = [a 1a4d1,13,14 exp (,11Z + ,13Z) - a3a4d3,1l,14 exp (,11Z + ,13Z) + 

+ a3a4d4,1l,13 exp (,11Z + A4Z) - a1a3d l ,13,14 exp (,11Z + ,14Z) + 

+ a1a3d3,11,14 exp (,13Z + A4Z) - alQ4d4,1j,13 exp (A3Z + A4Z)]jJ (39) 

118 = [a 3a4d3,1z,14 exp (A2Z + A3Z ) - aza4dz,13,14 exp (,1zZ + ,13Z) + 

+ aza3dz,13,14 exp (,1zZ + ,14Z) - a3a4d4,12,13 exp (AzZ + ,14Z) + 

+ aza4d4,1z,13 exp (,13Z + ,14Z) - aza3d3,1zA4 exp (,13Z + A4Z)]/J. (40) 

Some of the parameters appearing in Eqs (33) - (40) designate the following: 

(41) 
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i = 1,2,3,4 (42) 

i = 1,2,3,4. (43) 

Upon substituting for the constants kl through k4 in Eqs (24) and (25) from Eqs 
(29)-(32) one obtains solutions for the concentrations in the gas and the dynamic 
part of the liquid phase in the Laplace domain. 

If the concentration in the inlet liquid stream is not perturbed, then, according 
to the understanding that the concentrations are taken as deviations from the steady 
state values, one can write: 

X LZ = o. (44) 

Under such conditions the expression for the concentration in the outlet gas stream 
is obtained by substituting z = Z into Eq. (24). The resulting expression is then easily 
rearranged with the aid of Eqs (29)-(32) to yield the transfer function XGz/XGO 
representing the concentration response in the outlet gas stream following a change 
of the concentration in the inlet gas stream: 

(45) 

Under the same conditions, Eq. (44), i.e. if the inlet liquid stream is not being 
perturbed, one obtains after substituting z = 0 into Eq. (25), while making use of 
Eqs (29)-(32), an expression for the outlet liquid concentration. This in turn can be 
modified by an arithmetic operation to yield the transfer function X LO/X GO' This 
transfer function represents the response in the outlet liquid stream to a perturbation 
of the inlet gas stream. 

(46) 

If, on the contrary, the inlet gas stream is not being perturbed, one writes, again 
with the understanding regarding the reference value of the concentration scale, that: 

X GO = O. (47) 

With this assumption we can derive two transfer functions. One of them is XLO/X LZ ' 

expressing the concentration changes of the liquid outlet stream in response to a con-
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cent ration change in the inlet liquid stream. This transfer function is obtained from 
Eq. (25) by substituting z = 0 and after some arrangements in the form: 

(48) 

. The other function, Xaz/XLz, is obtained from Eq. (24) by substituting z = Z 
and expresses, on the contrary, the concentration changes in the outlet gas stream 
induced by the perturbations of the inlet liquid stream: 

(49) 

Axially Dispersed Model (AD-AD) 

The axially dispersed model both in the liquid and the gas phase is a limiting case 
of the PDE- AD model model when the stagnant liquid hold-up, hs, is put equal 
to zero. This reduces the number of parameters involved from eight to five. Apart 
froIl;l the stagnant hold-up also disappear the mass transfer coefficient between the 
gas and the stagnant liquid phase kLSaS and the coefficient of liquid exchange between 
the dynamic and the static liquid, q. The remaining model parameters are the gas 
and liquid hold-ups ha and hL' the axial dispersion coefficients in the gas and the liquid 
phases Ea and EL and the mass transfer coefficient kLa. A balance on mass of the 
absorbed component yields the following equations: 

(50) 

(51) 

Solution of this set of equations may be carried out in a manner analogous to that 
applied to the PDE-AD model. After the Laplace transform one can modify the 
resulting set of equations to an ordinary fourth order differential equation with con­
stant coefficients, Eq. (8), with the coefficients Ai -As being in this case defined 
as follows: 

Ai = _ hLELhaEa 
kLa 

(52) 
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A2 = hLELG - hGEGL 
kLa 

A4 = LhGs - GhL~ + L _ G 
kLa m 

1231 

(53) 

(54) 

(55) 

(56) 

The solution may then be written in the form of Eqs (24) and (25) replacing formally 
the concentration X D by XL in Eq. (25). The constants a l -a4 are in this case defined 
by the following formula: 

_ hGEG A~ + ~ Ai + hGs + ~ , 
kLa kLa kLa m 

i = 1,2,3,4. (57) 

The constants kl.-k4 , III Eqs (29)-(32), were determined from the Danckwerts' 
boundary conditions: 

:::; = 0, XG = X GO + EGhG dX(} , dXL = 0 (58) 
G dz dz 

:::; = Z, X - X _ ELhL dXL dXG = o. (59) L - LZ ----, 
L dz dz 

The transfer functions of the axially dispersed model AD - AD are formally 
identical with Eqs (44) - (49) for the PDE - AD model. However, the constants 
£II -d4 for the AD-AD model are defined as follows: 

(60) 

The PE- AD Model 

The PE - AD model is a limiting case of the PDE - AD model if the coefficient of 
axial dispersion in the dynamic part of liquid ED is taken equal zero. This causes 
that the dynamic liquid moves by plug flow, the total number of parameters is reduced 
to seven and the first term on the left hand side of Eq. (2) disappears. The PE-AD 
model was formulated and analyzed in an earlier paper 7 which gives also the complete 
solution of the balance equations and the derivation of the transfer functions. 
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Plug Flow in Both Phases 

The plug in both phases (PF - PF) as the model may be regarded also to be an 
asymptotic case of the PDE- AD model. The reduction of the PDE- AD model 
is effected by putting equal to zero the stagnant hold-up and the axial dispersion 
coefficients in the gas and the dynamic liquid phase. The model then contains only 
three parameters: the gas and liquid hold-ups hG and hL and the mass transfer 
coefficient kLa. 

The balance equations of the PF - PF model take the form 

(61) 

(62) 

Upon performing the Laplace transform and eliminating the concentration XL one 
obtains a single second order differential equation with constant coefficients 

(63) 

where 

(64) 

A2 = L _ G + s(hGL- hLGl 
m kLa· 

(65) 

(66) 

The characteristic equation 

(67) 

this time is a quadratic equation with its roots being given by the following relation 

(68) 
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Solution of Eqs (61) and (62) may then be written in the form 

where 

The constants k1 and k2' determined from the boundary conditions 

take the form 

z = 0, XG = XGO 

k1 = a2 exp (A2Z) XGO - XLZ 

a2 exp (A2Z) - a1 exp (AlZ) 

k2 = XLZ - a l exp (AlZ)XGO . 
a2 exp (A2Z) - al exp (AlZ) 

1233 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

The transfer functions of the PF - PF model are expressed by the following expres­
sions 

for XLZ = 0 and 

for XGO = O. 

X GZ = (a2 - at) exp (AtZ + A2Z) 

XGO a2 exp (A2Z) - a l exp (AtZ) 

XLO = a1.a2[ exp (A2Z) - exp (AtZ)] 

X GO a2 exp (A2Z) - at exp (AlZ) 

X LO a2 - al 

XLZ a2 exp (A2Z) - a l exp (AlZ) 

XGZ exp (A2Z) - exp (AlZ) 

XLZ a2 exp (A2Z) - a l exp (AlZ) 
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RESULTS 

Numerical calculations of applicability of the transfer functions for the evalua­
tion of the model parameters in the frequency domain. The transfer function may be 
transformed into the frequency domain simply by replacing the Laplace parameter 
by iw, where i designates the imaginary unit. The dependence of the transfer function 
on the frequency of the signal is the frequency characteristics of the transfer function 
which may be used to evaluate the parameters of the investigated model. The Bode 
plots, i.e. the dependences of the amplitude ratio and the phase lag on frequency, are 
graphical representations of the decay and shift of the input signal passing through 
the equipment. The amplitude ratio and the phase lag are related to the transfer 
function as follows 

(80) 

4J = arctg (fIR) . (81) 

Our earlier paper 7 gives a numerical test of the transfer functions from the stand­
point of their applicability to parameter evaluation of the PE - AD model in the 
frequency domain. In this paper we have generalized the analysis of the PDE - AD 
model and its two asymptotic cases - the AD-AD and the PF-PF models. 

The calculations, similarly as in the previous work, were carried out for the super­
ficial velocities G = 0·2 mls and L = 0·004 mis, the equilibrium constant m = 30, 
the column height 2 m and the void fraction 0·4 (spheres 0·01 m in diameter). The 
principal set of parameters consisted of the following values: EG = ED = 0·02 m2 s -1 , 

hD = hs = 0·05, hG = 0·3, kLDaD = kLSaS = 0·05 S-I, q = 0·04 S-I. 

Frequency characteristics of the transfer functions XGzlXGO and XLO/XGO for this 
set of parameters are plotted in Fig. 2. 
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FIG. 2 

Frequency dependence of the transfer func­
tions XGz/XGO and XLO/XOO for the 
PDE-AD model; 0 XGz/Xoo; • m XLO/ 
/XGO 
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The effect of individual parameters was investigated by constructing the Bode 
plots for several values of the parameter while keeping values of the remaining 
parameters constant. If, however, the investigated parameter was one of the hold-ups, 
the constraint was applied requesting that the sum of all holds-ups be equal to the 
void fraction of the bed. The courses in the Bode plots were investigated in the range 
of angular velocities between 0 and 1· 5 rad s - 1. 

From the obtained results it was concluded that for the above defined conditions 
the transfer functions X LO/X LZ and X GZ/X LZ are inapplicable. Although the former 
transfer function is significantly affected by all parameters of the model the outlet 
concentrations are extremely low owing to the practically total desorption of the 
dissolved gas in the column of the investigated length. Neither does the transfer 
function XGZ/XLZ supply a measurable response in case of a poorly soluble gas, 
regardless of the column length. 

The remaining two transfer functions may be used for parameter evaluation. From 
these, however, the transfer function XGz/XGO is significantly affected only by the 
parameters pertaining to the gas phase, while the X LO/X GO function is affected by the 
gas phase parameters only little while responding strongly to a change of the liquid 
phase related parameters and the mass transfer coefficients. 

From these findings it follows that the generalization of the analysis to the 
POE - AD model did not bring about any qualitative changes. At the value of 
ED = 0·02 m2 s -1 the transfer function X GZ/X GO practically does not differ from that 
of PE- AD model and in case of the XLO/XGO transfer function the amplitude ratio 
is lower by about 5% and the phase lag is about 10 to 15% higher. The effect of the 
axial dispersion coefficient, ED' on the amplitude ratio of the transfer function 
XLO/XGO is plotted in Fig. 3. With the exception of very high, and for a packed bed 
unrealistic values, its effect is relatively small. The same may be said about the phase 
lag of this transfer function, Fig. 4. 

A very significant effect on the transfer function X LO/X GO exercise the mass transfer 
coefficients kWaD and kLSas, see Figs 5 - 8. These figures show a greater effect of the 
"WaD coefficient both on the amplitude ratio and the phase lag. This observation, 
however, depends on the value of the exchange coefficient between the dynamic and 
the stagnant liquid phase, q. The effect of the coefficient q on the transfer function 
XLO/XGO is nevertheless small, equally as in the case of the PE-AD model. The eva­
luation of this parameter from the transfer function X LO/X GO may therefore encounter 
difficulties. 

A comparison of the Bode plots of the basic model with its three limiting cases 
for the basic set of data (for the limiting cases of the POE - AD model the values of 
the vanishing parameters are set equal to zero) is furnished in Figs 9-11. For the 
amplitude ratio of the transfer function X GZ/X GO, Fig. 9, the curves of the PDE - AD 
and the PE - AD models are identical and the AD - AD model differs only very little. 
The PF - PF model differs from the above three models fundamentally, for it deviates 
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The effect of the axial dispersion coefficient 
ED on the frequency dependence of the ampli­
tude ratio of the XLO/XGO function for the 
PDE-AD model. 1 ED = 0·001 m2 S-1, 
2 ED = 0·01 m2 s-1, 3 ED = 0·1 m2 s-1, 
4ED =0·Sm2 s- 1 
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The effect of the mass transfer coefficient 
kLDaD on the frequency dependence of the 
amplitude ratio of the XLO/XGO function for 
the PDE- AD model. 1 kLDaD = O· S S -1 , 

2 kLnaD=0·ls- 1, 3 kLDan=0·OSs-1, 
4 kLDan = 0·01 s-1, 5 kLnaD = 0·001 s-1 
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FIG. 4 

The effect of the axial dispersion coefficient 
ED on the frequency dependence of the phase 
lag of the XLO/XGO function for the PDE­
AD model. 1 ED = 0·001 m2 S-1, 2 En = 
= 0·01 m2 s -1, 3 ED = O·OS m2 s - 1, 4 ED = 
= 0·1 m 2 S-1, 5 ED = O·S m 2 S-1 
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FIG. 6 

The effect of the mass transfer coefficient 
kLSaS on the frequency dependence of the 
XLO/XGO function for the PDE-AD model. 
1 kLSas=0·Ss-1, 2 kLSaS =0·ls- 1 , 

3 kLSas = O·OS s-1, 4 kLSas = 0·01 S-1, 
5 kLSaS = 0·001 S-1 
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FIG. 7 

The effect of the mass transfer coefficient 
kLOao on the frequency dependence of the 
phase lag of the XLO/XGO function for the 
PDE-AD model. 1 kLOQO = 0·5s- 1 , 

2 kLOao=0'ls-1, 3 kLOQo=0'05s- 1, 
4 kLOao = 0'01 S-I, 5 kLOaD = 0'001 S-1 

logP 

I 
-010f-

-0-15 

FIG. 9 

The dependence of the amplitude ratio of 
the function Xoz/Xoo 011 the angular velo­
city (frequency) for the four tested models. 
1 PDE-AD, PE-AD; 2 AD-AD; 3 PF­
PF 
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FIG. 8 

The effect of the mass transfer coefficient 
kLSas on the frequency dependence of the 
phase lag of the XLO/XOO function for the 
PDE-AD model. 1 kLSas = 0'5 s-1, 
2 kLSQs=0'ls- 1 , 3 kLSas=0'05s-1, 
4 kLSas = 0'01 S-I, 5 kLSas = 0'001 s-1 
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FIG. 10 

The dependence of the amplitude ratio of 
the function X LO/ XGO on the angular velocity 
(frequency) for the four tested models. 
1 PE-AD; 2 PDE-AD; 3 PF-PF; 
4 AD-AD 
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only little from unity with increasing frequency. The phase lag of the transfer function 
X GZ/X GO of the PF - PF model grows linearly with angular velocity. The remaining 
three models deviate from the plug flow model only little toward lower values of the 
phase lag. 

The amplitude ratio of the transfer function X LO/X GO for all four tested models 
equals at zero frequency 0'033, which is an equilibrium value with the inlet concentra­
tion. With increasing angular velocity the amplitude ratio decreases, this decrease 
being the slowest for the PE - AD model and in the series PDE - AD, PF - PF and 
AD-AD the decrease increases (see Fig. 10). The difference between the PE-AD 
and the PDE - AD models is relatively small, similarly as between the PF - PF and 
the AD - AD models. Both pairs of models, however, differ one from another far 
more significantly. The difference between the two pairs of models is apparently due 
to the different magnitudes of the dynamic part of the hold-up. For the PE-AD 
and PDE- AD models the hold-up amounts to Ilo = 0'05, while for the AD - AD 
and PF-PF models all liquid hold-up is mobile, ilL = 0·1. The difference between 
the PE- AD and the PDE - AD models is caused by the axial dispersion coefficient 
ED and between the AD - AD and the PF - PF models by both axial dispersion 
coefficients, EG and EL • The phase lag of the transfer function XLO/XGO in the in­
vestigated frequency range increases for individual models in the series PE - AD, 
PDE-AD, PF-PF and AD-AD, i.e. in the opposite sequence than the amplitude 
ratio. 

CONCLUSION 

The performed analysis has shown that the transfer functions applicable for the eva­
luation of parameters of absorption of a poorly soluble gas in a counter-current 
packed bed column based on the PDE-AD model are XGz/XGO and XLO/XGO ' 

The transfer function XGz/XGO may be used to evaluate parameters characterizing 
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FIG. 11 

The dependence of the phase lag of the 
function XLO/XGO on the angular velocity 
(frequency) for the four tested models. 
1 PE-AD; 2 PDE-AD; 3 PF-PF; 
4AD-AD 
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the dynamics of the gas phase, while the parameters characterizing the dynamics 
of the liquid phase and interfacial transfer may be evaluated from the XLO!XGO 

transfer function. Both these transfer functions, however, are relatively little sensitive 
to the coefficient of exchange between the dynamic and the stagnant liquid phase, q. 
This conclusion is practically identical with the conclusions made earlier 7 on the 
basis of the PE-AD model. 

LIST OF SYMBOLS 

(/ specific interfacial area m - 1 

(. concentration defined as deviation from steady state value kmol m - 3 

L axial dispersion coefficient m2 s - 1 

(J superficial gas velocity m s - 1 

Ir hold-up 
I imaginary part of the transfer function 
k L mass transfer coefficient m s - 1 

L superficial liquid velocity m s - 1 

III equilibrium constant 
P amplitude ratio 
if coefficient of exchange between dynamic and stagnant I iquid phase s - 1 

1< real part of the transfer function 
Laplace parameter s - 1 

I time s 
X Laplace transform of concentration C 
:/ packed height m 
;: axial coordinate m 
I. root of characteristic equation m - 1 

q, phase lag rad 
('J angular velocity rad s - 1 

SliBSCRIPTS 

D dynamic liquid phase 
(i gas phase 
L liquid phase 
S stagnant liquid phase 
Z top of the column 
o bottom of the column 
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